REDUCTION OF GAS BREAKDOWN VOLTAGE
WITH PULSED IONIZING RADIATION

A. A. Dantser and V. A, Feoktistov UDC 537,56

An algorithm is described for computer calculation of the dynamic breakdown voltage of a gas
gap affected by a spatially uniform pulse of ionizing radiation, The algorithm is based on nu-
merical integration of a system of nonlinear equations with integral boundary conditions, The
program is used to calculate the breakdown voltage of an air gap affected by a bell-shaped
ionizing pulse, It is shown that the relative reduction in breakdown voltage can amount to tens
of percent for a radiation exposure dose rate Py~ 10% R/sec.

1. Charged particles are produced in a gas as the result of the action of external radiation, If the
amplitude of the pulse is sufficiently large, the resultant space charge distorts the initial uniform elec-
tric field (in the case of a plane-parallel electrode system) so that the development of electron avalanches
takes placein a nonuniform field. If the original parameters Ej, p, and d (E, is the initial electric field, p
the pressure, and d the distance between electrodes) are such that deviation of the field from uniformity
as a result of the effect of space charge leads to an increase in the multiplication factor u, the electrical
stability of a gas ionized by an external source will decrease,

Estimates of the effect of an external steady-state ionization of a gas on the breakdown voltage have
been made [1-3] by applying perturbation theory to the time-independent system of equations including the
Poisson equation, These results are restricted becausec of the limitation of a small relative change in the
breakdown voltage.

A study of the transient discharge current when space charge is neglected has been made by various
methods [4, 5]. Inclusion of the Poisson equation in a time-dependent system of equations makes analytic
solution difficult. An approximate method of solution was developed [6-8] which made it possible to study
the asymptotic variation of the current, including the effects of space charge, for t ~ T4 > T_ (where T
and T_ are the flight times across the interelectrode gap for ions and electrons respectively). The method
assumes that the space charge appears during a time ~ T as the result of a buildup of positive ions during
the transit of a large number of electron avalanches. As was demonstrated [6, p. 142], the transition to a
self-sustaining discharge can occur at an initial value of the multiplication factor y, less than but suffi-
ciently close to one, ensuring the transit of a large number of avalanches before the space charge mech-
anism begins to take effect and the factor u becomes greater than one,

Here we consider the transient discharge current in a gap affected by a powerful ionizing pulse of
the form Q(t) = Q,f (t) having a duration T ~ T_ (Q, is the peak value of the number of charges produced by
the external source per unit volume and per unit time; the value of Qy in CGS units for air at normal pres-
sure agrees numerically with the exposure dose rate P, expressed in roentgens per second). The amplitude
Qq is such that space charge formed during the pulse distorts the applied field, i.e.,

d1Qy=> U 4ad (1.1)

where U is the potential difference,

This leads to a need to consider the effect of space charge for times t ~ T_, Since the effect of the

external radiation in this case leads to strong distortion of the field and a change in the factor u, the tran-
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sition to a self-gustaining discharge may occur for values of the factorp; markedly less than one,

An algorithm and program for the calculation of the breakdown voltage of a gas located in a field of
pulsed ionizing radiation are developed here from an analysis of [9, 10], which are devoted to the application
of numerical methods to the solution of certain problems in gas-discharge physics, and a quantitative eval-
uation of the effect is made for specific cases.,

2. We consider a plane-parallel electrode system with the x axis directed from cathode to anode, An
ionization pulse of the form Q(t) is incident on the gas gap, The initial equation system and boundary condi-
tions have the form

890t = « (E) j_ — 8j_lox -+ Q (1) (2.1)
0q./0t = o (F) j_ + 0j./0z + Q (2) (2.2)
OE/6xr = 4 (g_ — q,) {2.3)
d
0, ) =11/, (0,0 3 Yy \a(B)_(z, t)dz (2.4)
0
j.d, =20

Here, q_ and q, are the charge densities for electrons and positive ions, j_ and j; are the current
densities for electrons and positive ions, «(E) is the impact ionization coefficient, E isthe electric field,
and v; and vy, are the coefficients of secondary ionization at the cathode for ion impact and photoeffect.

The Poisson equation (2.3) must be solved under the condition

d

SE(.r, tydx == U (1)

0

One can obtain a differential equation for the potential U(t) containing paramecters of the external cir-
cuit and of the discharge gap by applying Kirchhoff's laws to the electrical circuit. We assume the poten-
tial across the discharge gap is kept constant:

A

E (z, t)dz = UV = const

o

Considering Eq. (2.3), the boundary condition for the field takes the form

d x
E (0, t):%—-%Ssz[q_(x’{ f—q (@, O)dz’ (2.5)
0

0

Problems in the numerical calculation are the determination of the transient current J(t) in the ex-
ternal circuit

d
T = 7 \U- @, O+, (', ) da (2.6)

0

—_

and the determination of the differential field distribution E(x, t) at different times. If the potential across
the discharge gap is not kept constant, the current in the external circuit is given by

d
_;_{_’_ %L 1-\li-@ B + 1, (@, 11 da} 2.7)

At
[

J(t) =

In the calculations, the following empirical expressions were used for the quantities v_, v4, and o:

1) for air,

o(E) = {Clpexp[— D\E[pl, ElpW
Copexp[— Dop/E], E/p>W ©.8)
v.=pE/p, v,=wE/p
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where u_=4+10°cm? . mm Hg/V-sec, uy = 2°10° cm®-mm Hg/V-sec, Cy = 2,67+10- (cm-mm Hg)™!, C, =
8 (cm -mm Hg)™!, D; =—0.35 mm Hg*cm/V, D, = 247 V/cm+mm Hg, and W = 35 V/cm - mm Hg. Equations
(2.8) give a satisfactory approximation to tabulated data [11, p, 75] over the range 20 < E/p < 200;

2) for argon

v, = {mE/p)(i—BElp), EfplwW’
& VEI VD — By(p/EYY), E/p>W'

.9
v_=p_Efp, o(E)=Cpexp|— Di(p/E)], E/pW (2.9)

whereu_ = 3-10° cm?.mm Hg/V-sec, ;. = 10° ecm?- mm Hg/V - sec, k. =8.25:10° cm? *mm Hg/V-sec, W' =
60 V/cm+mm Hg, B; = 2.2-107% cm »mm Hg/V, B, = 86,52 (mm Hg-cm/V)'3/2, C; =29.22 (cm-mm Hg)™!,
D, = 26.64 (V/cm -mm Hg)"?, and W = 700 V/cm*mm Hg.

The argon data was taken from [10]., In that paper, the quantity P, varied over the range Py ~10°-108
R/sec. The system (2.1)-(2.5) in conjunction with Eqgs. (2.8) or (2.9) completely defines the problem if the
initial charge distribution and the value of the potential across the discharge gap are given, Since v <« v_,
electron inertia can be neglected by setting 8q_/8t = 0, Solving Eq. (2.1) by variation of the arbitrary con-
stant, we obtain

v (I”, I) dx”} dx’} (2.10)

:a(/)’t

i x,t)—exp{ga 't)dx’}[ (0 l)-}-Qut)Sexp{

In order to determine the conditions for the applicability of the quasistationary equation (2,10), we
compare it with the formal solution of Eq. (2.1) including electron inertia (under the condition v_ = const),

j_{z, t) = exp{gavx’, t— Il)dx’}[j_((), t—'z;r—) —Z-iO /t —Tv;_rl\/‘-exp{— g a(x”, t— T;_I")dx”}dx’] @2.11)
0 ]

It is then clear that Eq. (2.11) transforms into Eq. (2.10) if the functions change little during the time
T..

3. We consider a finite-difference scheme for solution of the problem, We first consider the case of
quasistationary electron equilibrium, We transform Eq. (2.10) into a difference equation by replacing in-
tegration with summation in accordance with the trapezoidal rule. Omitting intermediate transformations,
we give an expression for Eq. (2.10):

j_(mAz, t) = j_(0, )Y (mAz, t) + Q () Z (mAz, t)
m--1
Y (mAz, 1) = exp{ S [a(kAz, £) - a((k + 1) Az, z)]}
-t M- ~ (3.1)
Z(mAz, t) = Lz' 2 exp{% 2 {a(iAz, &) + o ((i + 1) Az, t)]} [1 ~- exp {— % [a (kAz, t} -+ o ((k 4- 1) Az, t)}]
k<0 i=1
m=1,2,...,.M; MAzx=d

In finite differences, Eq. (2.2) is written in the form

(ot LA — g, (z i@t An ) —f @ )
q, (& A[) 9, (= )=(1]_( ,t)—]—-”(r fAl 1+ (= ]‘FO(t)

z==0, Az, 28z, ..., (M — 1) Az; t =0, At, 2At (3.2)
Similarly, by applying the trapezoidal rule to the boundary condition (2.4), we obtain
Jo(MAZ, ) =0, j_(0,8) = 7/, (0, 8) = 745(0)
s g | (3.3)

5(t) = 2 [ (kAz, £) j_(kAz, ) +a (k1) Az, £) j_((k-+1)Az, )]

The representation of the Poisson equation and of the condition

{E{z, ydz = U
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in finite differences is as described in [12]. We present the equation set. The field at the boundary x = 0
is given by
A A

M
AE(0, ) = U — = 3 [E*(mba, 1) + E* ((m —1) Az, )] — 52 [q(MAz, 1) — ¢ (0, 1]

m==1
m (3.4)
E*(mAz, 1) = 4 ) S5 1g (kAg, t) + g ((k +1) Az, 1)), g=q_—q,

k=1

From the known value E(0, t), the field within the gap is given as
E (mAz, t) = E* (mAz, ) + E (0, 1) (3.5)

In order that the solution be stable when Ax~ 0, At — 0, At/Ax = const, it is necessary to satisfy the
inequality

At <K Az /v,

The system (3.1)-(3.5) describes a finite-difference scheme for quasistationary electron equilibrium.
1t is necessary to solve a system of 4(d/Ax + 1) equations in each time step in the case of an iterative solu-
tion, This can be simplified if two assumptions which introduce no noticeable error into the calculations
{12] are made: use the quantity q_(x, t—At) on the right sides of Eqs. (3.4) in determining the field at the
time t, and define the quantity o(t) in Eq. (3.3) as

M—1

o) = 5~ hz (@ (kAz, 1) j_(kAz, t — Af) + o ((k - 1) Az, ) < j_((k -+ 1) Az, t — Af)]
=0

If the field varies significantly during the time T_, electron inertia should be included. It is neces-
sary to consider in place of Eq. (2.10) a finite-difference representation of Eq. (2.1) having the form

q_(kAz, t + At) = At [a (kAz, t)j_(kAz, 1) — =002 0 A28 4 g (z)] g (kAz, t) k=1,2,... M
The use of a program including electron inertia requires that the time step satisfy the condition At <

ax/v_. :

This leads to a considerable increase in the amount of machine time in comparison with the case of
quasistationary electron equilibrium since v_ » v,. An optimal arragement is the use of a program in-
cluding electron inertia for times 0 < t < T, when the greatest rate of change of the field occurs, with a
subsequent shift to a "quasistationary" program for t » T,

4. Such a program was used to calculate the transient current for various applied voltages U, If U
is less than the breakdown voltage Ux, the current pulse J(t) created by an external effect dies out in time.
When U > Uy, a sharp rise in current is evidenced in the transient current curve at a certain point in time
(depending on the values of the coefficients ¢ and v and on the amplitude and duration of the ionizing pulse),
which indicates the development in the system of an instability associated with the transition to a self-
sustaining discharge. The limiting value of the parameter U which separates the rising and falling transient
curves is equated to the dynamic breakdown voltage in this paper.

We consider the results of tests which were performed for the purpose of checking the correctness
of the application of this algorithm to the calculation of the breakdown voltage.

The first set of calculations was related to the determination of the static volt—ampere characteristic
of a gas in a stationary radiation field on the basis of a time-dependent system of equations, This problem
can be solved if the ionizing pulse is given in the form of a rectangular step and the steady-state value of
the current J corresponding to the initial parameter U is calculated,

This same problem can be solved using a time-independent system of equations, The resultant two-
current boundary-value problem (of the two variable functions E(x) and j.(x), boundary conditions can be
formulated only for the current j_(x) at the points x = 0 and x =d) is solved by the trial method using a
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standard Runge —Kutta program in each breakdown version. The Runge—Kutta program provides consider-
ably greater computational accuracy than that previously provided by the finite-difference scheme involving
partial differential equations. It is convenient to take the total current J as a parameter because the equa-
tions are one-dimensional. The corresponding value of the potential is obtained by calculation of the field
distribution and taking the integral

d

Bli () dx = U

0

We compare the field distribution curves obtained by the two methods. Figure 1 shows the field dis-
tribution at a point on the volt—ampere characteristic having the coordinates J =6-107¢ A/em?, U =300 V
in argon for p =10 mm Hg,d =1 em, vj = 0,02, and Q, = 10-% C/cm?. sec. The dashed curve 1 was obtained
with the time-dependent algorithm and the solid curve 2 was obtained by application of the Runge —Kutta
program to the stationary system; curve 3 gives the initial field distribution. The good agreement of the
curves, which cover a nearly ninefold variation in the field, is evidence that the finite-difference repre-
sentation of the Poisson equation and inclusion of the effect of field nonuniformity on avalanche develop-
ment were done correctly in the time-dependent system,

The transient current was calculated for argon affected by a rectangular pulse of finite duration, The
calculations were based on a quasistationary system with p =10 mm Hg, d =1 c¢m, v; = 0,02, T = 0.5 usec,
and Q, = 10-% C/cm®- sec. Curves 1, 2, 3, 4, and 5 in Fig. 2 correspond to U = 300, 360, 390, 420, and 480
V. The sharp drop in current at T = 0,5 usec corresponds to the cutoff of the ionization pulse, Analysis of
the curves for times greater than those shown in the figure indicate that a sharp rise in current is typical
of curves 3, 4, and 5 while monotonic decay is typical of curves 1 and 2. The limiting value of U for which
the nature of the time dependence of the current changes falls within the range 360 V < U < 390 V accord-
ing to Fig. 2. If the breakdown woltage U, for this case is determined from the Townsend condition

Mo == Vi (exp (agd) — 1) = 1 (4.1)

which transforms with the help of Eq. (2.9) to the form
Uo=D*pdIn™{Cipd/In(1 +1/7)} 4.2)

it turns out to be 382 V, The calculated value agrees with the breakdown voltage obtained from the Town-
send theory within the accuracy of the step AU = 30 V by which the parameter U varies in the transition
from one curve to the next. In the absence of space charge, the method assumed for the calculation of
breakdown voltage gives a result which agrees with classical Townsend theory,

We present calculated results for the breakdown voltage of an air gap affect by a ionizing pulse of
the form
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P () =Pglexp (—t /1) — exp (—t/ 1)l (4.3)
where 7 = 1077 sec and T, = 1078 sec,

The pulse amplitude varied over the range P, ~ 10°-10® R/sec.
Two types of y processes at the cathode were considered: emis-
sion of secondary electrons from the cathode because of ion im-
pact, vy = 0,02; photoeffect at the cathode, y, =105, The calcula-
tion was made with a program which included electron inertia be-
cause the electric field varies greatly during the time T_ in this
case.

Figure 3 gives calculated curves for the transient current in
air when p = 760 mm Hg, d = 0.4 cm, y; = 0,02, Py = 10" R/sec (the
dot—dashed curves1 and 2 correspond to U =11.1 and 10.8 kV), and
Py =10% R/sec (solid curves 1and 2 correspond to U = 7,95 and 7.8
kV). It is clear that the breakdown voltage for P, = 10" R/ sec is
Ux =11.1, and Ux =17,95 for Py = 10® R/sec within the accuracy of
the step AU =0.3 kV. It is convenient to introduce the coefficient
characterizing the relative reduction in breakdown voltage

T]=(U0—U*)/UO

where U, is determined from the Townsend condition (4.1) with Egs,
(2.8) taken into account,

For the indicated values of the parameters p, d, and v;, we
find Uy = 11.7 keV and the coefficient n = 32% when Py = 10® R/sec,
The significant reduction in breakdown voltage is cxplained by the
strong nonuniformity of the field produced by the effect of the space
charge. It is of interest to analyze the nature of the time variation
of the field distribution, A set of curves characterizing the field
distribution at different times is shown in Fig. 4. Curves 1, 2, 3,
4, 5, and 6 correspond to t = 0, 0,335, 0,729, 2, 3, and 5 usec., The
curves were obtained for U < U, (U =10,8 kV, Py = 10’ R/ sec, dot—
dashed curve 2 in Fig. 3). Field nonuniformity increases, reaches
a maximum, and then the field approaches the initial uniform dis-
tribution in proportion to the drop in current.

Analysis of the current curves for U > Usx shows that the sharp
rise in current is accompanied by a further increase in field non-
uniformity. Similar transient current curves where photoeffect
was present at the cathode with vy, =10~% (U, = 14.3 kV) were cal-

culated for the following values of the amplitude of the jonizing pulse: P, =10%, 107, 5-107, and 8 - 10" R/sec,
In accordance with the proposed technique, U, was calculated for each value of Py and a curve of the re-
duction in breakdown voltage as 2 function of radiation dose rate was constructed (Fig. 5). A relative re-
duction in breakdown voltage amounting to 30-40% is observed for P, ~ 10'-10® R/ sec.

We consider whether or not the steep rise in the curves in Fig. 3 is a manifestation of the transition
of the discharge into a self-sustaining mode. The variation of the coefficient u(t) corresponding to the dot—

dashed curve 1

d

p(t)=r1: (exp {Sa [E (x, 1)] dx} —1)

is shown in Fig, 3 (dashed curve). The coefficient u(t) increases in proportion to the rise in current and
reaches a value equal o one at the beginning of the sharp rise in current,

A second calculation of the transient current (corresponding to the dot—dashed curve 1 in Fig. 3) was
made. The external ionizing pulse Q(t) was cut off at the time t = 0.3 usec, which is before the sharp rise
in the curve, Analysis of the results indicated the transient curve ended with a sharp rise in current inthis
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case. This is evidence that unstable growth of the current begins before the time when the transient curve
undergoes a steep rise independently of the effect of external ionization,

In all the calculations, the step along the spatial coordinate was Ax =0,05d; the time step was At = 0,17, when

working with the "inertial™ program and was At=0,1T for a rectangular pulse or At =1 pusec for rectangular step
when working with the "quasistationary" program, To check that the results did not depend on the choice of Ax
and At, trial calculations were made with smaller values of Ax and At.

Application of this algorithm to the calculation of the dynamic breakdown voltage in the case of an air

gap showed that the breakdown voltage drops by nearly a factor of two for a sufficiently high radiation dose
rate. The mechanism for the reduction in breakdown voltage advanced in this formulation of the problem
is associated with the effect of the space charge produced by external ionization,
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